Simbiose Industrial e a redução dos impactos ambientais dos processos produtivos: estudos realizados entre 2012 e 2017
DOI:
https://doi.org/10.26767/1742Resumo
Os impactos ambientais oriundos de gestão inadequada dos recursos naturais junto com as mudanças climáticas vêm exigindo modelos de gestão baseados no construto de desenvolvimento sustentável, que possam qualificar os processos produtivos para atender as demandas da sociedade atual e futura. Uma forma de qualificar os sistemas produtivos que tem sido cada vez mais difundida baseia-se no conceito de simbiose, que consiste em aproximar as organizações para melhorar os fluxos de energia e material de forma a reduzir os impactos ambientais. Nesta perspectiva este estudo busca por meio de uma revisão da literatura, identificar e analisar artigos que relatam estudos de casos sobre simbiose industrial no âmbito internacional. Os resultados apontam que a simbiose industrial vem sendo aplicada para gerar benefícios ambientais, sociais e econômicos em diferentes setores produtivos, além de contribuir para modelos de gestão urbana, agricultura familiar e construção civil. Nota-se também que a China é o país que mais desenvolveu estudos sobre o assunto, enquanto no Brasil nenhum estudo com essa abordagem foi encontrado.Referências
ALBINO, V.; FRACCASCIA, L.; GIANNOCCARO, I. Exploring the role of contracts to support the emergence of self-organized industrial symbiosis networks: An agent-based simulation study. Journal of Cleaner Production, v. 112, p. 4353–4366, 2016.
ALFARO, J.; MILLER, S. Applying Industrial Symbiosis to Smallholder Farms: Modeling a Case Study in Liberia, West Africa. Journal of Industrial Ecology, v. 18, n. 1, p. 145–154, 2014.
BARBIERI, R.; SANTOS, D. F. L. Fatores Direcionadores à Ecoinovação Empresarial: Uma Revisão 69Sistemática. Revista de Administração, Contabilidade e Economia da FUNDACE, v. 9, n. 1, p. 47– 63, 2018.
BOONS, F. et al. Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. Journal of Industrial Ecology, v. 21, n. 4, p. 938–952, 2017.
BOOTH, A.; SUTTON, A.; PAPAIOANNOU, D. Systematic approaches to a successful literature review. Sage Publications, 2. ed., 2016
BRENT, G. F. et al. Mineral Carbonation as the Core of an Industrial Symbiosis for Energy-Intensive Minerals Conversion. Journal of Industrial Ecology, v. 16, n. 1, p. 94–104, 2012.
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. JCR apresenta dados de 2015-2016. Disponível em: https://www.periodicos.capes.gov.br/?option=com_pnews&component=NewsShow&view=pnewsnewsshow&cid=385&mn=0
CARRAPIÇO, F.; RITA, O. Simbiogénese e Evolução. Evolução. Conceitos e Debates, p. 175–198, 2009.
CMMAD - Comissão Mundial Sobre Meio Ambiente e Desenvolvimento. Nosso futuro comum. Rio de Janeiro: Fundação Getúlio Vargas, 1991.
DRESCH, A; LACERDA, D. P.; ANTUNES J, J. A. V. Design Science Research: método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2015.
DONG, H. et al. Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki. Energy, v. 64, p. 277–286, 2014a.
DONG, L. et al. Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model. Energy Policy, v. 61, p. 864–873, 2013.
DONG, L. et al. Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China. Energy Policy, v. 65, p. 388–397, 2014b.
DONG, L. et al. Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China. Ecological Modelling, v. 361, p. 164–176, 2017.
EHRENFELD, J.; GERTLER, N. Industrial Ecology in Practice. Journal of Industrial Ecology, v. 1, n.1, p. 67–79, 1997.
ELSEVIER. Plataformas de pesquisa 2018. Disponível em https://www.elsevier.com/pt-br/research-platforms.
FAN, Y. et al. Emergy analysis on industrial symbiosis of an industrial park – A case study of Hefei economic and technological development area. Journal of Cleaner Production, v. 141, p.791–798, 2017.
FINK, A. G. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications, 3 ed, 2014.
FROSCH, R. A. Industrial ecology: a philosophical introduction. Proceedings of the National Academy of Sciences, v. 89, n. 3, p. 800–803, 1992.
GALVÃO, T. F.; PEREIRA, M. G. Revisões sistemáticas da literatura: passos para sua elaboração. 70Epidemiologia e Serviços de Saúde, v. 23, n. 1, p. 183–184, 2014.
GIL, A. C. Como elaborar projetos de pesquisa. São Paulo, Atlas, 4. ed., 2007.
GLAVIČ, P.; LUKMAN, R. Review of sustainability terms and their definitions. Journal of Cleaner Production, v. 15, n. 18, p. 1875–1885, 2007.
GONELA, V.; ZHANG, J. Design of the optimal industrial symbiosis system to improve bioethanol production. Journal of Cleaner Production, v. 64, p. 513–534, 2014.
GONELA, V.; ZHANG, J.; OSMANI, A. Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains. Computers and Industrial Engineering, v. 87, p. 40–65, 2015.
HAN, F. et al. Circular economy measures that boost the upgrade of an aluminum industrial park. Journal of Cleaner Production, v. 168, p. 1289–1296, 2017.
HEIN, A. M. et al. Stakeholder power in industrial symbioses: A stakeholder value network approach. Journal of Cleaner Production, v. 148, p. 923–933, 2017.
KERN, E.; DICK, M.; NAUMANN, S.; HILLER, T. Impacts of software and its engineering on the carbon footprint of ICT. Environmental Impact Assessment Review, 52, 53-61, 2015. doi:10.1016/j.eiar.2014.07.003
KIKUCHI, Y. et al. Industrial Symbiosis Centered on a Regional Cogeneration Power Plant Utilizing Available Local Resources: A Case Study of Tanegashima. Journal of Industrial Ecology, v. 20, n. 2, p. 276–288, 2016.
KITCHENHAM, B. et al. Systematic literature reviews in software engineering-A tertiary study. Information and Software Technology, v. 52, n. 8, p. 792–805, 2010.
LENHART, J.; VAN VLIET, B.; MOL, A. P. J. New roles for local authorities in a time of climate change: The Rotterdam Energy Approach and Planning as a case of urban symbiosis. Journal of Cleaner Production, v. 107, p. 593–601, 2015.
LEONG, Y. T. et al. Multi-objective optimization for resource network synthesis in eco-industrial parks using an integrated analytic hierarchy process. Journal of Cleaner Production, v. 143, p. 1268–1283, 2017.
LI, B. et al. The vulnerability of industrial symbiosis: A case study of Qijiang Industrial Park, China. Journal of Cleaner Production, v. 157, n. January 2016, p. 267–277, 2017.
LI, H.; DONG, L.; REN, J. Industrial symbiosis as a countermeasure for resource dependent city: A case study of Guiyang, China. Journal of Cleaner Production, v. 107, p. 252–266, 2015.
LIU, L. et al. The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park. Energy Policy, v. 46, p. 301–307, 2012.
MACHI, L. A; MCEVOY, B. T. The Literature Review: Six Steps to Success. Thousand Oaks, Calif: Corwin Press, 2012
MANNINO, I. et al. The decline of eco-industrial development in Porto Marghera, Italy. Journal of Cleaner Production, v. 100, p. 286–296, 2015.
MAUTHOOR, S. Uncovering industrial symbiosis potentials in a small island developing state: The case study of Mauritius. Journal of Cleaner Production, v. 147, p. 506–513, 2017.
MENEGHETTI, A.; NARDIN, G. Enabling industrial symbiosis by a facilities management optimization approach. Journal of Cleaner Production, v. 35, p. 263–273, 2012.
ODUM, E. P.; BARRETT, G. W. Fundamentos de ecologia. São Paulo: Cengage Learning, 2007.
OLIVEIRA, N. G. C. . B et al. Principles and tools of cleaner production: An exploratory study in Brazilian companies [Princípios e ferramentas da produção mais limpa: um estudo exploratório em empresas Brasileiras]. Gestao e Producao, v. 22, n. 2, p. 326–344, 2015.
PAULA, E. V.; ABREU, M. C. S.; SOUSA, C. B. Motivações e Barreiras para a Simbiose Industrial: A Experiência no Estado de Minas Gerais. XVI Congresso Latino-Iberoameriana de Gestão da Tecnologia. Porto Alegre de 19 a 22 out, 2015. Disponível em http://altec2015.nitec.co/altec/papers/146.pdf
PRODANOV, C.C; FREITAS, E.C. Metodologia do trabalho científico: Métodos e técnicas da pesquisa e do trabalho acadêmico. Novo Hamburgo, Feevale, 2. Ed, 2013.
RAAFAT, T. et al. An ontological approach towards enabling processing technologies participation in industrial symbiosis. Computers and Chemical Engineering, v. 59, p. 33–46, 2013.
ROSA, M.; BELOBORODKO, A. A decision support method for development of industrial synergies: Case studies of Latvian brewery and wood-processing industries. Journal of Cleaner Production, v. 105, p. 461–470, 2015.
SHARIB, S.; HALOG, A. Enhancing value chains by applying industrial symbiosis concept to the Rubber City in Kedah, Malaysia. Journal of Cleaner Production, v. 141, p. 1095–1108, 2017.
SHORT, S. W. et al. From refining sugar to growing tomatoes: Industrial ecology and business model evolution. Journal of Industrial Ecology, v. 18, n. 5, p. 603–618, 2014.
SIMBOLI, A.; TADDEO, R.; MORGANTE, A. Analysing the development of Industrial Symbiosis in a motorcycle local industrial network: The role of contextual factors. Journal of Cleaner Production, v. 66, p. 372–383, 2014.
TANIMOTO, A. H. Proposta de simbiose industrial para minimizar os resíduos sólidos no Pólo Petroquímico de Camaçari. Dissertação (Mestrado Profissional em Gerenciamento e Tecnologias Ambientais no Processo Produtivo) UFBA, 2004.
TENG, Y. et al. Analysis of stakeholder relationships in the industry chain of industrialized building in China. Journal of Cleaner Production, v. 152, p. 387–398, 2017.
TOWNSEND, C. R.; BEGON, M; HARPER, J. L. Fundamentos em ecologia. Porto Alegre: Artmed, 3 ed, 2010. TROKANAS, N.; CECELJA, F.; RAAFAT, T. Semantic approach for pre-assessment of environmental indicators in Industrial Symbiosis. Journal of Cleaner Production, v. 96, p. 349–361, 2015.
UBANDO, A. T. et al. Fuzzy mixed integer non-linear programming model for the design of an algae-based eco-industrial park with prospective selection of support tenants under product price variability. Journal of Cleaner Production, v. 136, p. 183–196, 2016.
WANG, Q.; DEUTZ, P.; CHEN, Y. Building institutional capacity for industrial symbiosis development: A case study of an industrial symbiosis coordination network in China. Journal of Cleaner Production, v. 142, p. 1571–1582, 2017.
WEN, Z.; MENG, X. Quantitative assessment of industrial symbiosis for the promotion of circular economy: A case study of the printed circuit boards industry in China’s Suzhou New District. Journal of Cleaner Production, v. 90, p. 211–219, 2015.
WU, J. et al. The redundancy of an industrial symbiosis network: A case study of a hazardous waste symbiosis network. Journal of Cleaner Production, v. 149, p. 49–59, 2017.
WU, J.; QI, H.; WANG, R. Insight into industrial symbiosis and carbon metabolism from the evolution of iron and steel industrial network. Journal of Cleaner Production, v. 135, p. 251–262, 2016.
YU, F.; HAN, F.; CUI, Z. Evolution of industrial symbiosis in an eco-industrial park in China. Journal of Cleaner Production, v. 87, n. C, p. 339–347, 2015a.
YU, F.; HAN, F.; CUI, Z. Reducing carbon emissions through industrial symbiosis: A case study of a large enterprise group in China. Journal of Cleaner Production, v. 103, p. 811–818, 2015b.
ZHANG, H. et al. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis. Energy Policy, v. 61, p. 1400–1411, 2013a.
ZHANG, H. et al. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron / steel industrial park : A case study with carbon flow analysis. Energy Policy, 2013b. Disponível em: <http://dx.doi.org/10.1016/j.enpol.2013.05.066>
ZHANG, Y.; ZHENG, H.; FATH, B. D. Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park. Ecological Modelling, v. 306, p. 174–184, 2015.
ZHE, L. et al. An emergy-based hybrid method for assessing industrial symbiosis of an industrial park. Journal of Cleaner Production, v. 114, p. 132–140, 2016.